

The 7th CIRP IPSS Conference 21-22 May 2015 Saint-Etienne, France

An Automation Approach Based on Workflows and Software Agents for IPS² by

E. Uhlmann, C. Gabriel and N. Raue

Presenting Author: C. Gabriel Department of Machine Tools and Factory Management, Technische Universität Berlin Berlin, Germany <u>gabriel@iwf.tu-berlin.de</u>

Agenda

- Motivation of research
- Concept for modelling, simulation and execution of IPS² business processes
- Modeling with process fractals
- Simulation of business processes
- Execution of business processes through a process engine and an agent system
- Summary and future work

Motivation

- IPS² in the industrial sector highly customer individual
- High dynamics over the entire lifecycle necessary to fulfill customer needs
- Responsibility of IPS² provider for processes in the delivery phase
- Arising risks by guaranteeing availability or production output
- Interaction between processes and products to deliver IPS²
- → Challenge: How can the IPS² provider efficiently model, simulate and execute IPS² business processes?

- Every customer receives an individual IPS² business process
 - Modeling and simulation in the development phase
 - Execution in the delivery phase
- Process modeling and simulation in a workflow management system
 - BPMN2.0 based modeling language
 - Tool: IYOPRO of the company intellivate GmbH
- Interaction between processes and physical products by means of web services and software agents during execution

P – IPS² planning

2015

7th

- D IPS² development
- I IPS² implementation
- O IPS² operation

- IPS² business processes
 - Customer individual modelling
 - Covering whole lifecycle of a customerprovider-relationship
 - One-time execution
 - Conventional business processes
 - Equal sequence for different customers
 - Modelling in sections
 - Repeatable execution

- Customer individual business process is divided into lifecycle phases
- Process fractals will be assigned to lifecycle phases to fulfill customer requirements
- Sequence of tasks is controlled by configuration parameters
- Configuration parameters are customer individually attributed

- 1. Submit customer master data and initial information
- 2. Set IPS² lifecycle phases

- 3. Select process fractals
- 4. Individualize process fractals
 - 4a. Determine configuration parameters
 - 4b. Determine responsibilities
- 5. Simulate IPS² business process
- 6. Execute IPS2 business process
- 7. Evaluate execution

- Seven stage procedure for modeling, simulation and execution
- Selection of activities in dependence of multi project management according to the Project Management Institute (PMI)

Implementation Operation	Implementation Operation Closure
Manufacture Maintenance Training Procurement Invoicing	1 2 3 4 5 ×
Configuration parameters	
Area 1	A V
Type of production:	single-unit ▲ series ▼
Work loading:	automated manual
Number of pieces:	max
Sampling:	20
Measurement:	sequential parallel
ок	Cancel

- Process fractals are selected in a database
- Example of necessary lifecycle phases and process fractals to fulfill customer's needs (operation in the result oriented business model)
- Configuration parameters are attributed
- Example of attributed configuration parameters of the process fractal "manufacturing" in the use phase

Process fractal "manufacturing"

Process fractal "repair"

- One-time execution of Fractals
 - Direct → fractal starts after the ending of the previous fractal
 - Time based → fractal starts after a defined time period or at a particular time
 - Event based → fractal starts after an event occurs, e. g. signal of a machine tool, or notice of the customer
 - Repeated execution of Fractals
 - Determined → fractal will be performed a specific number of time
 - Scheduled → fractal will be performed until a particular time

Simulation

- Characteristics of IYOPRO's simulation environment:
 - Interface to the open source simulation library DESMO-J
 - Discrete event simulation (DES) of process models
 - Consideration of all process models for the determination of resource utilization
- Procedure:
 - Determination of simulation parameters,
 e. g. task duration, branch probability, and
 resource costs
 - Determination of simulation period
 - Simulation execution
 - If necessary, process model optimization

Simulation

- Selection of simulation goals:
 - Lead time of delivery
 - Costs
 - Resource utilization
 - Availability of production resources
 - Producible number of pieces
- Simulation of a machine tool's availability to verify the necessity of condition based maintenance
- Advantages of condition based maintenance:
 - Travel time does not effect the availability negatively
 - Elimination of on-site analysis leads to shortened repair time

Execution

IPS2-LMS:IPS2-Lifecycle Management SystemIPS2-ES:IPS2-Execution SystemVLCU:Virtual Lifecycle Unit

- Business processes consist of manual and automated tasks
 - Manual tasks are transmitted to roles
 - Automated tasks are executed by a software agent system
- Agent system consists of role agents and interface agents
 - Role agents represent key roles in the IPS² delivery, e. g. service technician
 - Interface agents serve the purpose of integrating heterogeneous systems, e. g. sensors, machine tools and IT systems
- BPMN agent encapsulates all functions of the machine tool

Execution

Advantages of the agent system:

- Integration of human as well as technical resources in the IPS² delivery
 - Modular automation architecture allowing for high flexibility of the IPS² provider during varying customer requirements or business model changes
- IPS² provider can reuse developed functions/services for different customers

Execution

UML diagram of the agent system communication

Evaluation

- Type of evaluation according to HEVNER ET AL.
 - Descriptive
 - Constructed scenario to demonstrate the method's utility
- Type of evaluation according to KROMREY
 - Impact evaluation
 - Summative
 - Internal
 - Evaluation criteria = requirements of the method

Summary

- Efficient modeling of customer individual business processes through process fractals and configuration parameters
- Simulation of the IPS² delivery by using the software IYOPRO of the company intellivate GmbH
- Execution of business processes by a process engine and an agent system which are linked through web services
- Future Work:
 - Execution of a project for the application and evaluation of the modeling method in a company which develops machine tools and delivers services for dental products
 - Development of fractals and configurations parameters for different industrial sectors (currently the focus is on the micro production)

Thank you for your attention!

Dipl.-Ing. Christian Gabriel

Institute for Machine Tools and Factory Management Technische Universität Berlin gabriel@iwf.tu-berlin.de

